Sulfur Hazes in Giant Exoplanet Atmospheres: Impacts on Reflected Light Spectra

نویسندگان

  • Peter Gao
  • Mark S. Marley
  • Kevin Zahnle
  • Tyler D. Robinson
  • Nikole K. Lewis
چکیده

Recent work has shown that sulfur hazes may arise in the atmospheres of some giant exoplanets, due to the photolysis of H2S. We investigate the impact such a haze would have on an exoplanet’s geometric albedo spectrum and how it may affect the direct imaging results of the Wide Field Infrared Survey Telescope (WFIRST), a planned NASA space telescope. For temperate (250 K<Teq<700 K) Jupiter-mass planets, photochemical destruction of H2S results in the production of ∼1 ppmv of S8 between 100 and 0.1 mbar, which, if cool enough, will condense to form a haze. Nominal haze masses are found to drastically alter a planet’s geometric albedo spectrum: whereas a clear atmosphere is dark at wavelengths between 0.5 and 1 μm, due to molecular absorption, the addition of a sulfur haze boosts the albedo there to ∼0.7, due to scattering. Strong absorption by the haze shortward of 0.4 μm results in albedos <0.1, in contrast to the high albedos produced by Rayleigh scattering in a clear atmosphere. As a result, the color of the planet shifts from blue to orange. The existence of a sulfur haze masks the molecular signatures of methane and water, thereby complicating the characterization of atmospheric composition. Detection of such a haze byWFIRST is possible, though discriminating between a sulfur haze and any other highly reflective, high-altitude scatterer will require observations shortward of 0.4 μm, which is currently beyond WFIRST’s design.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photochemistry in Terrestrial Exoplanet Atmospheres. Ii. Hs and so Photochemistry in Anoxic Atmospheres

Sulfur gases are common components in the volcanic and biological emission on Earth, and are expected to be important input gases for atmospheres on terrestrial exoplanets. We study the atmospheric composition and the spectra of terrestrial exoplanets with sulfur compounds (i.e., H2S and SO2) emitted from their surfaces. We use a comprehensive one-dimensional photochemistry model and radiative ...

متن کامل

The Role of Clouds in Brown Dwarf and Extrasolar Giant Planet Atmospheres

Clouds and hazes are important throughout our solar system and in the atmospheres of brown dwarfs and extrasolar giant planets. Among the brown dwarfs, clouds control the colors and spectra of the L-dwarfs; the disappearance of clouds helps herald the arrival of the T-dwarfs. The structure and composition of clouds will be among the first remote-sensing results from the direct detection of extr...

متن کامل

Giant Planet Atmospheres and Spectra

Direct measurements of the spectra of extrasolar giant planets are the keys to determining their physical and chemical nature. The goal of theory is to provide the tools and context with which such data are understood. It is only by putting spectral observations through the sieve of theory that the promise of exoplanet research can be realized. With the new Spitzer and HST data of transiting “h...

متن کامل

The Dawes Review 3: The Atmospheres of Extrasolar Planets and Brown Dwarfs

The last few years has seen a dramatic increase in the number of exoplanets known and in the range of methods for characterising their atmospheric properties. At the same time, new discoveries of increasingly cooler brown dwarfs have pushed down their temperature range which now extends down to Y-dwarfs of <300 K. Modelling of these atmospheres has required the development of new techniques to ...

متن کامل

A GROUND-BASED OPTICAL TRANSMISSION SPECTRUM OF WASP-6b

We present a ground based optical transmission spectrum of the inflated sub-Jupiter mass planet WASP-6b. The spectrum was measured in twenty spectral channels from 480 nm to 860nm using a series of 91 spectra over a complete transit event. The observations were carried out using multi-object differential spectrophotometry with the IMACS spectrograph on the Baade telescope at Las Campanas Observ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017